Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10920, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343570

RESUMO

Semi-enclosed seas are often associated with elevated local threats and distinct biogeographic patterns among marine fishes, but our understanding of how fish assemblage dynamics vary in relation to relatively small semi-enclosed seas (e.g., the Gulf of Aqaba) remains limited. Baited remote underwater video surveys (n = 111) were conducted across ~300 km of coral reef habitats in the Gulf of Aqaba and the northern Red Sea. A total of 55 predatory fish species were detected, with less than half of all species (n = 23) observed in both basins. Relative abundance patterns between the Gulf of Aqaba and the northern Red Sea were variable among taxa, but nearly twice as many predatory fish were observed per unit of effort in the northern Red Sea. In general, assemblages in both basins were dominated by three taxa (Epinephelinae, Carangidae, and Lethrinidae). Large-bodied and threatened species were recorded at very low abundances. Multivariate analysis revealed distinct assemblage structuring of coral reef predators between the Gulf of Aqaba and the northern Red Sea. Most of the species driving these differences were recorded in both basins, but occurred at varying levels of abundance. Environmental factors were largely unsuccessful in explaining variation in assemblage structuring. These findings indicate that biological assemblages in the Gulf of Aqaba are more distinct than previously reported and that reef fish assemblage structuring can occur even within a relatively small semi-enclosed sea. Despite inter-basin assemblage structuring, the overall low abundance of vulnerable fish species is suggestive of overexploitation in both the Gulf of Aqaba and the northern Red Sea of Saudi Arabia. As the region surveyed is currently undergoing large-scale coastal development, the results presented herein aim to guide spatial management and recovery plans for these coral reef systems in relation to this development.

2.
Sci Rep ; 13(1): 11222, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433818

RESUMO

Sea turtles are migratory with nesting and foraging areas in distinct and often widely separated habitats. Telemetry has been a vital tool for tracking sea turtle migrations between these areas, but tagging efforts are often focused on only a few large rookeries in a given region. For instance, turtle tagging in the Red Sea has been focused in the north of the basin. We tagged five green turtles (Chelonia mydas) at a nesting site in the central-southern Red Sea and tracked them for 72-243 days. During the inter-nesting period, the turtles showed high site-fidelity, with a maximum home range of 161 km2. After the nesting season, the turtles migrated up to 1100 km to five distinct foraging locations in three countries (Saudi Arabia, Sudan, and Eritrea). Movements within foraging habitats were more wide-ranging compared to inter-nesting movements, with home ranges varying between 1.19 and 931 km2. The tracking data revealed that the creation of a relatively small marine reserve could protect the critical inter-nesting habitat in the Farasan Banks. The results also highlight the need for multinational collaboration to protect migratory corridors and foraging sites of this endangered species.


Assuntos
Neoplasias de Células Escamosas , Neoplasias Cutâneas , Tartarugas , Animais , Oceano Índico , Espécies em Perigo de Extinção , Eritreia , Movimento
3.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670854

RESUMO

(1) Background: Plastic pollution is a major environmental concern confronting marine animals. Sea turtles are considered a bio-indicator of plastic pollution, but there is little information regarding plastic ingestion by turtles in the Red Sea. With large-scale development projects being built along the Saudi Arabian coast, it is important to have a baseline for plastic ingestion before construction is complete. (2) Methods: Ten deceased sea turtles (four hawksbill and six green turtles) were collected along the Saudi Arabian coastline. Necropsies were conducted, and the entire gastrointestinal tracts were extracted and the contents were passed through a 1 mm mesh sieve. (3) Results: We found that 40% of the turtles in this study had ingested plastics. Thread-like plastics were the most common plastic category, and multi-colored was the most prevalent color category. (4) Conclusions: Monitoring of the plastic ingestion by marine megafauna should be conducted as a long-term assessment of the developments' impacts. Additionally, conservation efforts should be focused on removing plastics (namely ghost nests and fishing lines) from the reefs and reducing the amount of plastic entering the sea.

4.
PLoS One ; 17(9): e0275511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178940

RESUMO

The Red Sea is particularly biodiverse, hosting high levels of endemism and numerous populations whose extinction risk is heightened by their relative isolation. Elasmobranchs and sea turtles have likely suffered recent declines in this region, although data on their distribution and biology are severely lacking, especially on the eastern side of the basin in Saudi Arabian waters. Here, we present sightings of elasmobranchs and sea turtles across the north-eastern Red Sea and Gulf of Aqaba collected through a combination of survey methods. Over 455 survey hours, we recorded 407 sightings belonging to 26 elasmobranch species and two sea turtle species, more than 75% of which are of conservation concern. We identified 4 species of rays and 9 species of sharks not previously recorded in Saudi Arabia and report a range extension for the pink whipray (Himantura fai) and the round ribbontail ray (Taeniurops meyeni) into the Gulf of Aqaba. High density of sightings of conservation significance, including green and hawksbill sea turtles and halavi guitarfish were recorded in bay systems along the eastern Gulf of Aqaba and the Saudi Arabian coastline bordering the north-eastern Red Sea, and many carcharhinid species were encountered at offshore seamounts in the region. Our findings provide new insights into the distribution patterns of megafaunal assemblages over smaller spatial scales in the region, and facilitate future research and conservation efforts, amidst ongoing, large-scale coastal developments in the north-eastern Red Sea and Gulf of Aqaba.


Assuntos
Tubarões , Tartarugas , Animais , Biodiversidade , Oceano Índico , Arábia Saudita
5.
PeerJ ; 10: e13928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032942

RESUMO

Background: Anthropogenic sources can lead to the accumulation of heavy metals in marine organisms through ingestion, absorption, or inhalation. For sea turtle embryos, heavy metals can be absorbed into the egg from the incubation environment or be maternally transferred to the offspring causing neurological, reproductive, and developmental problems. Here, we report heavy metal concentrations in green turtle hatchlings from the largest rookery on the Red Sea, Ras Baridi. Methods: Deceased hatchlings were collected from two beaches near a cement factory at Ras Baridi, from which heavy metal concentrations (chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), and lead (Pb)) were measured from the liver, muscle, and residual yolk of the hatchlings. Results: Although based on a small sample of hatchlings, the data presented here provides the first measurements of heavy metals from sea turtles in the Red Sea and highlights the link between human activity and its impact on the ecology of sea turtles. In general, the heavy metal concentrations of heavy metals were not significantly different between the beach next to the cement factory and the beach downwind from the factory. However, the concentrations of heavy metals were significantly different between sampled tissues (liver, muscle, and residual yolk). Discussion: This study provides insight into current heavy metal levels in green turtle hatchlings, which can be used as bio-indicators for environmental contaminants as coastal development increases in the Red Sea. Moreover, we found a lack of standardized methodology to evaluate heavy metals in hatchling sea turtles. Future efforts should work toward creating comparable techniques for long-term heavy metal monitoring, as this is a useful determinant of anthropogenic pollution.


Assuntos
Metais Pesados , Tartarugas , Animais , Humanos , Arábia Saudita , Metais Pesados/toxicidade , Zinco , Cobre
6.
PeerJ ; 10: e13408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795175

RESUMO

Background: There is relatively little published information about sea turtle nesting distribution and seasonality in the Saudi Arabian Red Sea. Upcoming large-scale developments occurring along the Saudi Arabian Red Sea coast could negatively affect many sea turtle nesting beaches with potential impacts on the survival of local populations. Methods: In 2019, two coastal beaches and three near-shore islands were surveyed for turtle nesting in the central Red Sea. We recorded all emergences, examined beach morphology, and collected sand samples to determine grain size, moisture content and colour. Results: Sea turtle nesting was found at all surveyed sites, though emergence counts were often low. The limited occurrence of nesting at several previously undocumented sites suggests that nesting activity may be widespread, but sparsely distributed, in the central Red Sea region. In addition, nesting at novel sites appeared to favour the seaward side of islands, a pattern that was not observed in previously documented areas. The substrate of most surveyed sites was composed of calcium carbonate with Ras Baridi as the only exception; it was composed of dark quartz-rich sediment. This study highlights several important sea turtle rookeries while also demonstrating that low levels of nesting occur throughout the region, although inter-annual nesting patterns still need to be determined. Future developments should be steered away from key nesting areas and the seaward bias in marginal rookeries should be taken into account where possible.


Assuntos
Tartarugas , Animais , Oceano Índico , Arábia Saudita
7.
Environ Monit Assess ; 194(6): 450, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608726

RESUMO

Sand samples were collected from four beaches near a cement factory in Ras Baridi, north of Yanbu, which hosts the largest green turtle rookery in Saudi Arabia. Heavy metal concentrations (Cd, Pb, Fe, Cr, Ni, Se, Sb, As, and Cu) were measured at three different depths. For most elements, there were no significant differences in concentrations among depths; however, significant differences were found among the nesting beaches in Ras Baridi, which were likely influenced by the wind direction from the factory. Fe, Cr, Cu, and Ni had elevated contamination factor values, suggesting that the nesting beaches downwind and adjacent to the cement factory contained moderately contaminated sand. Given the possibility of heavy metals being absorbed through eggshells, there is a potential risk of heavy metal contamination in clutches laid in Ras Baridi. The rising threat to the local ecology in Saudi Arabia due to recent coastal developments for tourism projects highlights the importance of monitoring heavy metal concentrations over time.


Assuntos
Metais Pesados , Tartarugas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Areia , Arábia Saudita , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Mar Pollut Bull ; 166: 112244, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740655

RESUMO

In the face of increasing anthropogenic threats, coastal nations need to reach common ground for effective marine conservation. Understanding species' connectivity can reveal how nations share resources, demonstrating the need for cooperative protection efforts. Unfortunately, connectivity information is rarely integrated into the design of marine protected areas (MPAs). This is exemplified in the Red Sea where biodiversity is only nominally protected by a non-cohesive network of small-sized MPAs, most of which are barely implemented. Here, we showcase the potential of using connectivity patterns of flagship species to consolidate conservation efforts in the Red Sea. We argue that a large-scale MPA (LSMPA) would more effectively preserve Red Sea species' multinational migration routes. A connectivity-informed LSMPA approach provides thus one avenue to unite coastal nations toward acting for the common good of conservation and reverse the global decline in marine biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Ecossistema , Peixes , Oceano Índico
9.
J Fish Biol ; 97(5): 1569-1572, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32864738

RESUMO

Coral reef fishes use a multitude of diverse feeding behaviours to increase their ability to successfully capture a wide range of prey. Here, this study reports a novel hunting behaviour in a coral reef fish, the titan triggerfish, Balistoides viridescens, where an individual was seen partially beaching itself while attempting to catch a Red Sea ghost crab, Ocypode saratan. This is the first report of this behaviour in the order Tetraodontiformes and represents an astonishing capability of this species to exploit food resources outside their typical assumed ecological niche.


Assuntos
Recifes de Corais , Comportamento Predatório/fisiologia , Tetraodontiformes/fisiologia , Animais , Braquiúros , Ecossistema , Oceano Índico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA